河南高考数学辅导班哪家好?答题技巧有哪些?
2017-07-12 16:04
来源:
作者:
【摘要】数学高考题型分为:选择题、填空题、简答题。以新课标卷为例,数学题共22道,选择12道,填空4道,大题6道。其中选择题的12题,填空题的16题,以及简答题的22题是数学卷中有一定难度的题。
新东方顾问免费答疑!
1. 选择题十大速解方法:
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
2. 填空题四大速解方法:
直接法、特殊化法、数形结合法、等价转化法。
解答题答题模板
1. 三角变换与三角函数的性质问题
(1)解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
(2)构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
2. 解三角形问题
(1)解题路线图
① a 化简变形;b 用余弦定理转化为边的关系;c 变形证明。
② a 用余弦定理表示角;b 用基本不等式求范围;c 确定角的取值范围。
(2)构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
3. 数列的通项、求和问题
(1)解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
(2)构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
4. 利用空间向量求角问题
(1)解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
(2)构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
5. 圆锥曲线中的范围问题
(1)解题路线图
①设方程。
②解系数。
③得结论。
(2)构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
6. 解析几何中的探索性问题
(1)解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
(2)构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
7. 离散型随机变量的均值与方差
(1)解题路线图
① a 标记事件;b 对事件分解;c 计算概率。
② a 确定ξ取值;b 计算概率;c 得分布列;d 求数学期望。
(2)构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
8. 函数的单调性、极值、最值问题
(1)解题路线图
① a 先对函数求导;b 计算出某一点的斜率;c 得出切线方程。
② a 先对函数求导;b 谈论导数的正负性;c 列表观察原函数值;d 得到原函数的单调区间和极值。
(2)构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
新东方顾问免费答疑!
【温馨提示】:更多中学全科辅导、四六级、考研、雅思、托福课程,敬请关注郑州新东方学校官网(http://zz.xdf.cn/)。如果看完本篇文章的小伙伴们,对郑州新东方课程有什么疑问的话,请随时联系老师(电话:0371-56557819),郑州新东方会尽全力给您提供最真诚的服务,帮小伙伴们的学习成绩再上一层楼!
好老师,一目了然;好课程,一键直达!
郑州新东方教师展示平台正式上线!
版权及免责声明
①凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。
② 本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。
③ 如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。